JOINT COMMISSIONING REPORT OF AGATOBWE MHPP UPGRADE

Date: 13-14 March 2020

1. Introduction

AGATOBWE MHPP is a hydropower plant located on Agatobwe river in Southern province, Nyaruguru district and Ngoma. Before being leased to CARERA-EDERER&TIGER LTD, it was operating as off grid power plant with installed capacity of 200kW. Among the conditions to be fulfilled by developer to operate the plant but not limited to, are to upgrade from 200kW to 390kW and connect the plant to the grid. These conditions were achieved with the maximum load is 400kW during commissioning tests. The maximum runaway speed achieved during load rejection was 1052rpm while the run-away speed of turbine manufacturer is 1190rpm. They performed a number of civil works and electromechanical works at head race channel and power house. Testing and commissioning tests started in December 2019 up to March 2020. Dry tests and hydraulic tests were performed by developer himself without the presence of the purchaser and wet commissioning tests were performed under the presence of purchaser's representatives.

2. Specifications features of the plant

2.1. Turbine

Manufacturer: Rain power

Type: Horizontal Francis

Net head: 24m

Rated power: 405kW

Nominal speed: 600rpm

Nominal flow: 1.9m³/sec

2.2. Generator

Manufacturer: NIDEC LEROY-SOMER

Nominal Voltage: 400V

1 | Page

for I LH OHT

Nominal current: 707.3A

Rated output: 392kW/490kVA

Power factor: 0.8

Excitation voltage: 47 4000 40 00 th

Excitation current: 1.8 -4A

Nominal speed: 600rpm

3. Activities performed by the developer for plant rehabilitation and upgrade

S/N	Part	Performed works	I D .
1	Intake	Replacement of the existing trash racks by the new ones with 5cm clearance between the bars to allow the flow equivalent to the new plant capacity Attend the leakage on undersluice gate Insert of GRP pipe and installed in parallel of the existing channel and meet near the forebay Installation flow meter under the bridge at intake Drainage of rain water from the road that was bring soil and sedimentation from the road into intake tank Fencing the intake tank	Remarks Undersluice gate leakage was not completely attended because heavy rain in the area that washes the poured conctrete and it shall be attended during dry season
	Headrace canal and GRP pipe	✓ Installation of the GRP pipes in parallel with the existing canal ✓ Attend the landsliding uphill the canal and greening down side of GRP	As the canal is located down side of the road, it was difficult to attend water from the road that causes landsliding. As it is difficult to attend it during rain season, and the best solution will be implanted during dray season by canalizing road
F	orebay tank		rainwater

2 | Page

m for & a LH OHT

4	Spill way channel	increased by 50cm to accommodate enough quantity of water flow for generation ✓ Painting of the existing trash racks ✓ Fencing the forebay tank and energy reducer	automated for reducing intermittent operation of intake gate when there is loss of grid or plant break down
		 ✓ Crest level of spill way channel was increased by 50cm to 100cm along its length ✓ Protection of down side of the forebay tank 	increased more 20cm
5	Penstock	Total replacement of the existing penstock	
6	Power house	 ✓ All electromechanical equipment in power house were replaced ✓ Power house was refurbished ✓ Protection of power house uphill side against landsliding ✓ Rainwater drainage ✓ Power house site fencing ✓ Grounding all electromechanical equipment in power house, switchgear and interconnection system ✓ Fencing the powerhouse site and transformer site 	Main entrance gate of power house is not yet in place and it will be done before the end of March 2020
7	Tail race	Tailrace was modified and results to the increase of net head and there is no more leakage at this part as it was in December 2019.	
8	Security	Cameras for security monitoring were installed at different parts of power plant such as intake site, forebay site and power house (Inside and outside) as well	

4. Performed commissioning test under the presence of Purchaser representatives

Before conducting conducting the tests, joint team made a tour to different parts of the projects and found that most of civil works were completed and there is no leakage on penstock, headrace channel.

3 | Page

m for a LH OHT

Tests performed under the presence of purchaser's representatives are as follows:

- ✓ Starting sequence of the machine
- ✓ Bearings and winding temperatures testing for 1hour to check their stabilization
- ✓ Excitation of the machine
- Synchronisation of the plant to the grid
- ✓ Loading the machine at the different loads (25%, 50%, 75% and 100%). At each step of load, the machine was running at least 20minutes and there was no abnormal observation during this loading test
- ✓ Load rejection tests at 25%, 50%, 75% and 102.5% and the results of testing are attached on this report
- ✓ Protection testing was done in December 2019 and confirmed by protection specialist at
- ✓ Flow meter for river flow measurement was installed its results were confirmed.

5. Energy meters reading at 10:34 AM of March 14, 2020

5.1. Meter number \$N:216566533

- Import active energy: 978.121kWH
- Import Reactive energy: 378.663KVARH
- Export Active energy: 4924.990kWH
- Export reactive Energy: 1515.628KVARH

5.2. Meter number SN:216566457

- Import active energy: 978.022kWH
- Import Reactive energy:377.559 KVARH
- Export Active energy:4924.421 kWH
- Export reactive Energy:1514.042 KVARH

6. Pending activities to be carried out by developer

S/N	Issue	Resolution
1	Leakage on undersluice gate at intake and land sliding along headrace channel	It will be attended during dry season
2	Overspilling of spillway channel (Escape	This will be attended within

4 | Page

m de g

	channel) at the section near the forebay and this shall not affect the plant operation during the time of attending this issue	next week by adding 20cm and it will done while the plant is operation
3	Power house main entrance gate is not yet welded and put in place while plant commissioning	This will be done within one week starting from the end of wet commissioning tests
4	Firefighting system for safety purpose of personnel and machinery and switchgear as well	Firefighting extinguishers and water shall be put in place within one week starting from the date of completion of wet commissioning test
5	Reliability test of 72hours is under process and once completed, results will be added to the full testing and commissioning tests to be submitted	This test shall be completed in three days starting from today March 14, 2020

7. Conclusion and recommendation

7.1. Conclusion

- ✓ During the test, no abnormal observation to plant operation and grid.
- ✓ Capacity of the plant is achieved and maximum reading during the test was 400.2KW
- ✓ Voltage, frequency and power factor found during the operation are of acceptable range according to grid requirement and the plant operation doesn't show any negative impact to the grid.
- ✓ Energy meters were recorded after load rejection test
- ✓ Flow meter for river water flow measurement is providing the realistic results

7.2. Recommendations

For better operation of the plant safely, the developer is recommended the following:

> Complete all pending issues on agreed timeline

Done on 14 March and Signed 2020 by:

CARERA-EDERER&TIGER LTD's representatives

S/N	Names	Function	Institution	Signature
1	Lars Helvik	Project manager	Malthe Winje Automasjon	hurs Helvik
2	T. Nanda Gopal	Resident Engineer	Malthe Winje Infrapower	1.10-dgop
3	Ole Henrik Torekoven	Scada Engineer	Malthe Winje Automasjon	attelle

Purchaser's side (REG) representatives

S/N	Names	Position	Institution	Signature
1	NTANYUNGURA Jean Bosco	IPPs Manager	EUCL	on the
2	SIKA Robert	IPP management Team member	REG	Runsly
3	INGABIRE ANNICK	IPP Engineer	EUCL	S Junio

PICTURES ILLUSTRATING THE SOME TESTS RESULTS

7 | Page

n for 8 LH Off

section of spillway escape channe

Machine running at 25% of rated capacity

Machine running at 100% load

The maximum achieved capacity during test

8 | Page

n fl.

9 LH OFF

RIVER FLOW METER READINGS FROM CONTROL ROOM

A D		2- Level Channel - GRP
take Bridge Calculated Flow	2550	l/sec
take Bridge Speed	2.31	m/s
ake Bridge Level	59.0	cm
ss Head	24.8	m
Head	23.1	m
Tube Water Level	132	cm
PRODUCTION UN	IT STATE	
Online		7
SPARNITROL MO	ODE	

9 | Page

m Reg & LH OFT

Agatobwe River. Extra note made during test and commission.

The attached description explains the chosen device to measure the river flow in Agatobwe River.

Main reason for choosing this kind of measurement device for this river is:

This river carries huge size of tree logs and huge quantity of derbies
 And not suited to have direct instrument into the water.

Type off woodlogs carried by river.

 The chosen device is also more accurate and widely used for this kind of rivers.

m LH SPR. 9

Manuel test readings:14 March 10.50 AM.

Manually measured in measurement area: = 0.77 m

Manually measured surface velocity (m/s) = 1.2 m/s

Width of measurement Area = 3.12 m

 $Q = A \times (0.85 \times Vsurface)$

Manual measured flow Q = 3.12*0.77 *(0.85*1.2) = 2.45 m3/s

Trend from scada during manual test period. 10.50 AM showing 2.46 m3/s..

n LH for.

1. Introduction

Currently there are no gauging structures installed along the Agatobwe River. In order to accurately determine the flow rate of the Agatobwe river for the generation calculation of the Agatobwe Small Hydropower Plant, a gauging system needs to be installed. Due to the small project cost an innovative solution for the measurement of the river flow is proposed.

An existing bridge is located 44 m upstream of the Agatobwe weir. There are no tributaries between the bridge and the weir and the existing bridge provides a fixed cross section to determine the flow area. Therefore, we propose the use of a **Non-Contact Open Channel Flow Velocity and Level Meter** installed under the bridge. The instrument measures both the water level and the surface velocity and calculates the flow rate using the method described below.

Figure 1: Example of Non-contact Open Channel Flow Velocity and Level Meter installed on a bridge

2. Method

The method of measurement proposed is the area velocity method. The equation for calculating the flow:

 $Q = A \times (0.85 \times v_{surface})$

Q = river flow rate (m³/s)

A = calculated area (m²)

v = measured surface velocity (m/s)

The calculated area will make use of the existing bridge cross section, illustrated in the sketch below. During the upgrade of the existing works, a base is to be built along the river bed below the bridge to provide an even floor for measurement. The newly constructed base together with the existing bridge cross section provides a fixed cross section to determine the flow area and is used as inputs to the instrument to calculate the flow rate.

The flow height of the cross section (h2) will be measured by the instrument using an infrared sensor, installed below the bridge. The flow depth together with the fixed base and side walls, will provide the calculated flow area A, see Table 1.

Figure 2: Sketch of bridge located 44 m upstream of Agatobwe weir

The second measurement will be of the *velocity*. The velocity will be measured using an ultrasonic sensor installed in the same instrument. The ultrasonic measurement makes use of the Doppler Effect. Surface velocity measurement functionality is achieved by transmitting an electromagnetic wave in 24 GHz frequency range (K-band), and measuring the frequency shift of the electromagnetic wave reflected from the flowing water surface. The frequency shift is caused by the Doppler effect of the moving surface on the electromagnetic wave. As the relative speed between the radar sensor and the water surface increases, the detected frequency shift also increases, thus enabling the flow meter to precisely determine the surface flow velocity. Ultrasonic level measurement is achieved by transmitting specially formed series of pulses and with waveform measurements and return analysis very precise distance (level) measurement is achieved.

Table 1: Flow rate variables and measurements

Fixed Variables	Measurements
b	h2 (reading from radar lever sensor)
h1	v = v _{surface} x 0.85 v _{surface} (reading from surface velocity sensor)
	0.85 factor (Studies performed by USGS reveal that, typically, the mean velocity is 80-95% of the surface velocity, the average being 85%.)

Area of trapezoidal channel

$$A = (b + z*(h1-h2))*(h1-h2))$$

b = fixed bottom width of bridge

z = fixed side slope of bridge

h1 = fixed depth from bridge deck

h2 = reading from radar level sensor

Using the readings h2 and v_{surface} the flow in the Agatobwe River can be calculated within an accuracy of 1 % with the radar water level reading and 0.5 % with the ultrasonic sensor. The instrument datasheet is only a representation and the supplier may vary.

Appendix A - Photos of site

Appendix B - Data Sheet of Flow meter

Figure 1: Agatobwe weir with bridge further upstream

Figure 2: Agatobwe Bridge looking upstream from the weir

Figure 3: On Agatobwe Bridge looking upstream

HIGHLIGHTS

- Contactless, above the water, flow measurement
- Surface flow velocity measured with radar sensor
- Water level measured with ultrasonic sensor
- Wide velocity measurement range from 0,02m/s to 15m/s
- Distance measurement range from 0,5, to 10m
- Long range operation up to 10m above water level
- Compact, low-power design
- Wide input voltage range, suitable for solar applications
- Supports variety of communication interfaces (RS-232, RS-485, CAN, Alarm open-drain outputs)
- Optional SDI-12 support

- IP68-rated enclosure (for outdoor applications and harsh environments)
- K-band 24.125 GHz or 24.200 GHz radar option
- Automatic mounting angle compensation (cosine correction)
- Configurable direction of the flow measurement
- PC application for radar setup and live flow monitoring
- Simple integration with existing SCADA or telemetry systems
- Easy pole, wall or enclosure mounting

PRODUCT DESCRIPTION

Geolux RSS-2-300 WL flow velocity and level meter uses radar technology to provide precise contactless measurement of surface flow velocity, and ultrasonic robust sensor for measuring the distance from the sensor to the water level. Contactless radar & ultrasonic technology enables quick and simple sensor installation above the water surface, and requires minimum maintenance.

RSS-2-300 WL flow meter is used to monitor flow velocity and level of open channels such as rivers, irrigation channels or sewer systems, and for monitoring and control of hydropower plants and wastewater treatment plants. The flow meter is also suitable for various mass flow metering applications in mining processing plants, industrial installations, and, due to operation without moving parts and robust mechanical design, is ideal for flammable fluids and harsh chemical applications.

The radar operates in K-band (at 24.125 or 24.200 GHz), and provides flow speed readings 20 times per second over serial (RS-232, RS-485) and CAN interfaces. Ultrasonic level sensor operates in frequency range between 20 kHz and 350 kHz.

Variety of supported communication interfaces and protocols enable easy integration with existing telemetry equipment and SCADA systems. Integrated tilt sensor measures inclination angle of the sensor and the flow velocity measurement is automatically cosine-corrected according to the measured mounting tilt angle.

Geolux RSS-2-300 WL radar sensor is certified according to both European and American standards, and is being used worldwide.

Geolux is a company based in the European Union that develops and manufactures radar sensors for use in traffic, security and hydrology applications.

DETAILED SPECIFICATIONS

GENERAL

Radar Type K-band 24.125GHz/24.200GHz

Doppler radar, 27 dBm EIRP

Beam Angle 12° Azimuth, 24° Elevation

Detection Distance

Speed Range 0,02 m/s to 15 m/s

Speed Resolution 0,01 mm/s

Ultrasonic Frequency 20 kHz to 350 kHz

Distance Range 0,5 m to 10 m Distance Resolution

1 mm

IP Rating **IP68**

INTERFACE

Serial Interface 1 x serial RS-485 half-duplex

1 x serial RS-232 (two wire interface)

Serial Baud Rate 1200 bps to 115200 bps Serial Protocols

ASCII-S, GLX-NMEA CAN Interface Up to 1Mbps CAN2.0

Alarm Outputs 2 x open collector, max 50V 200mA

Connector M12 circular 12-pin

ELECTRICAL & MECHANICAL

Power Input 9 to 27 VDC

Power Consumption < 1,35W (typical 1,0W)

Maximal Current < 250 mA

Temperature Range -40°C to +85°C

(without heating or coolers)

Enclosure Dimensions 150 mm x 200 mm x 250 mm

FCC & CE APPROVED

EN 50293:2000

EN 61000-6-2, EN 61000-6-4:2007

EN 61000-3-2:2006+A1:2009+A2:2009

EN 61000-3-3:2008

EN 300 440-1, EN 300 440-2

For more information, please visit our web page:

www.geolux-radars.com/hydrology or contact us at: geolux@geolux.hr

Agatobwe Mini Hydro Power Plant Commissioning and Final Inspection

ma tole LH

Commissioning and Final Inspection T. Nanda Gopal, January, 2020

Based on ESAP, Reference Mini-hydropower Standard

m q

RP

LH

A. Salient Features

Location: Aga	nt:Agatobwe MHPP tobwe River, Ngoma, Nyaruguru trict, Rwanda	Name of Owner: CARERA-EDERER & TIGER Limited
Manufacturer	Rain Power, NIDEC, ABB & : Malthe Winje	Supplier/Installer: Malthe Winje
Ownership:	Private	
Gross head: System:	30 Meter; Design flow: 1.9 m³/s Three-phase	No of households: Connected to National Grid Rated output: 390 kW / 490 kVA Voltage: 400 V; Maximum current 707.3 A
Start of constr Commissionin	uction of project: 07/01/2019 g date: 13/03/2020	day/month/year day/month/year

B. Technical Status

Type of intake: Permanent	Permanent/Temporary
If permanent, any cracks observed:	No
Any leakage observed: Trash rack at intake: Installed	Yes
If installed, Clearance: 5 cm	Installed
Any structured cracks observed:	
Type of Trash rack: Metal	No
	Metal
Flow controlling mechanism: Sluice G	ale & Knife Gate
same has to be addressed in the dra	y major defects observed. e are not effective due to heavy rains. The y season to have 100 % leak proof. Trash
Remarks on Intake - Briefly discuss an Repairs intended at intake drain gat same has to be addressed in the dry rack painting has to be completed	y major defects observed. e are not effective due to heavy rains. The y season to have 100 % leak proof. Trash
same has to be addressed in the dry rack painting has to be completed	are not effective due to heavy rains. The season to have 100 % leak proof. Trash
same has to be addressed in the dry rack painting has to be completed 3.2 Headrace ngth of headrace : 525 m (2 runs) Rectangular & 1 Circular	Type of headrace: Top Covered Cemented (Rectangular) & GRP Pine
same has to be addressed in the dry rack painting has to be completed 3.2 Headrace ngth of headrace : 525 m (2 runs) Rectangular & 1 Circular ny leakage observed:	Type of headrace: Top Covered Cemented (Rectangular) & GRP Pipe (Circular)
same has to be addressed in the dry rack painting has to be completed 3.2 Headrace ngth of headrace : 525 m (2 runs) Rectangular & 1 Circular	Type of headrace: Top Covered Cemented (Rectangular) & GRP Pipe (Circular)
same has to be addressed in the dry rack painting has to be completed 3.2 Headrace ngth of headrace : 525 m (2 runs) Rectangular & 1 Circular ny leakage observed: ny cracks observed: emarks on Headrace — Briofly disease	Type of headrace: Top Covered Cemented (Rectangular) & GRP Pipe (Circular)
same has to be addressed in the dry rack painting has to be completed 3.2 Headrace Ingth of headrace: 525 m (2 runs) Rectangular & 1 Circular Iny leakage observed: Iny cracks observed: Iny cracks observed: Iny cracks on Headrace — Briefly discuss owever while the machine at the complete served:	Type of headrace: Top Covered Cemented (Rectangular) & GRP Pipe (Circular)

m & See LH

B.3 Forebay Type of Forebay: RCC RCC Trash rack: Installed Installed If installed, Clearance: 2 cm Any structured cracks observed: No Type of Trash rack: Metal Metal Spillover: Incorporated Incorporated Flushing arrangement: Works well Works well Air vent pipe: Not installed not installed Remarks on Forebay - Briefly discuss any minor/major defects observed: As discussed in B.2. **B.4 Penstock Pipes** Penstock Length: 50 Material: MS; Thickness: 8 mm; OD: 914 Mm m Any leakage observed in Penstock: No Expansion Joint: Flange connected Flange connected Any leakages in expansion joint: No No. of joints: 1 Nos No. of Penstock Sections: 3 Remarks on Penstock pipes - Briefly discuss any major defects observed

m & for LH

B.5 Anchor Blocks/Support Pier

Any cracks observed in support piers:	No	
and piocks/support piers	No s - Briefly discuss any minor/major defects observed	
B.6 Powerhouse		
Powerhouse size (internal):	L10.5m B_6.2_m H 6.0 m	
	L10.5m B_6.2_ m H 6.0m	
Construction: Brick masonry	Stone masonry in c	
Powerhouse roof: Corrugated GI	Corrugated GI	
Powerhouse floor: Cemented	Cemented	
Adequate working space for O/M:	Yes	
Cleanliness:	Yes	
Adequate lighting in PH:	Yes	
Free of undue leakages:	Yes	
Tailrace safely disposed off:		
	Yes	
Earthing done properly:	Yes Yes (Earth resistance < 1 ohm:) any major defects observed	
Earthing done properly:	Voc /Forth ! .	
Earthing done properly: Remarks on Powerhouse - Briefly discuss	Voc /Forth ! .	
Earthing done properly: Remarks on Powerhouse - Briefly discuss 7.7 Tailrace Onstruction: Stone masonry in c	Yes (Earth resistance < 1 ohm:) any major defects observed	
Earthing done properly: Remarks on Powerhouse - Briefly discuss 7.7 Tailrace Ponstruction: Stone masonry in calculations rectangular	Yes (Earth resistance < 1 ohm:) any major defects observed Stone masonry in c	
Earthing done properly: Remarks on Powerhouse - Briefly discuss 7.7 Tailrace Onstruction: Stone masonry in c ection: Rectangular ondition of tailrace:	Yes (Earth resistance < 1 ohm:) any major defects observed Stone masonry in c Rectangular	
Earthing done properly: Remarks on Powerhouse - Briefly discuss 5.7 Tailrace construction: Stone masonry in c ection: Rectangular ondition of tailrace: ny cracks observed in structure:	Yes (Earth resistance < 1 ohm:) any major defects observed Stone masonry in c Rectangular Good No	
Earthing done properly: Remarks on Powerhouse - Briefly discuss 5.7 Tailrace construction: Stone masonry in c ection: Rectangular ondition of tailrace: ny cracks observed in structure:	Yes (Earth resistance < 1 ohm:) any major defects observed Stone masonry in c Rectangular Good No	
Earthing done properly: Remarks on Powerhouse - Briefly discuss 6.7 Tailrace construction: Stone masonry in c ection: Rectangular ondition of tailrace:	Yes (Earth resistance < 1 ohm:) any major defects observed Stone masonry in c Rectangular Good No	
Earthing done properly: Remarks on Powerhouse - Briefly discuss 5.7 Tailrace construction: Stone masonry in c ection: Rectangular ondition of tailrace: ny cracks observed in structure:	Yes (Earth resistance < 1 ohm:) any major defects observed Stone masonry in c Rectangular Good No	
Earthing done properly: Remarks on Powerhouse - Briefly discuss 5.7 Tailrace construction: Stone masonry in c ection: Rectangular ondition of tailrace: ny cracks observed in structure:	Yes (Earth resistance < 1 ohm:) any major defects observed Stone masonry in c Rectangular Good No	
Earthing done properly: Remarks on Powerhouse - Briefly discuss 5.7 Tailrace construction: Stone masonry in c ection: Rectangular ondition of tailrace: ny cracks observed in structure:	Yes (Earth resistance < 1 ohm:) any major defects observed Stone masonry in c Rectangular Good No	
Earthing done properly: Remarks on Powerhouse - Briefly discuss 5.7 Tailrace construction: Stone masonry in c ection: Rectangular ondition of tailrace: ny cracks observed in structure:	Yes (Earth resistance < 1 ohm:) any major defects observed Stone masonry in c Rectangular Good No	
Earthing done properly: Remarks on Powerhouse - Briefly discuss 5.7 Tailrace construction: Stone masonry in c ection: Rectangular ondition of tailrace: ny cracks observed in structure:	Yes (Earth resistance < 1 ohm:) any major defects observed Stone masonry in c Rectangular Good No	

m & Sof LH

Francis Yes 0-6.12 kg/cm² 1.91 kg/cm² 2.04 kg/cm² Gate valve Horizontal	
0-6.12 kg/cm ² 1.91 kg/cm ² 2.04 kg/cm ² Gate valve	
1.91 kg/cm² 2.04 kg/cm² Gate valve	
1.91 kg/cm² 2.04 kg/cm² Gate valve	
2.04 kg/cm² Gate valve	
Gate valve	
Well aligned	
es any major defects at	
Voltage: PF	400V
Full load current:	O.8
Full load current: Protection class: IP23	707.3 A

7 SOC LH

B.10 Control Panel and Switchgear

Protection provided:		Yes No
	Generator Feeder	ABB-REG 615 ABB-REF 615
Size of Feeder Breake	er: 630 A Rated breaki	ing capacity of the breaker: 20 kA
Feeder Circuit breaker (Yes) operated	is locally (Yes)/Remotely	20 RA
	breakers of adequate size:	Yes
Size of Synch Breaker:	800 A HRC Fuse with Tripping	Rated breaking capacity of the breaker: 35 kA
Type of Fuse installed:	Device	Rating: 25 A on MV
OFF/ ON feeder switche	es working properly:	Yes
ightning arrestors insta	lled at the Feeder side:	Van
arthing of lightning arre	stors properly done	Yes
metal parts in power h	nouse well connected to earth	Yes Yes
leasuring instruments in	ncorporated in the SCADA panel	to measure the following:
 Main voltage a Load currents 	nd Excitation voltage	Yes (x) No ()
Frequency		Yes (x) No ()
4. Power (kW)		Yes (x) No () Yes (x) No ()
5. Energy (KWh)		
Reactive Energy	Jy (kVAr)	
Indicator lamps		Yes (x) No ()
Indicator lamps	turbine operating hours)	Yes (x) No ()

m & SP LH

B.11 Cable, Connections and supply Type of power cable used in the power house:	
Size of Cable Cable jointing and connections properly?	Copper 2 run 4 core 185 mm²
Parting and connections properly?	Yes
3.12 Transmission	
Type of transmission	Partially under
ength of the system:	Partially underground 26 m;
oltage transmission line:	30 kV
Type of cable:	
Type of Pole:	CU/XLPE/SWA/PVC
ghtning arrestor installed at each end of line	
	Yes
are earthings provided to each lightning arrestor?	
re all joints along the earth path being clamped?	Yes
	Yes
measured ground resistance < 1 ohm?	
	Yes

n 9 80. LH

Transformer: ABB (Oil immersed ONAN		
	Type: TSPH-19009	No: 1 LTF	R 0043262
Capacity:	630 kVA	Operating Altitude: 2000 M	
	No. of Phases: 3	Frequency: 50Hz	
	Vector Group: Dyn11	Voltage : 30 KV/400V	
	Rated Current: 12.12 A / 9		
nstalled at:	masonry		
	installation height abov	e ground: 1.5 m	
ansformers well protec	ted against any form of unauthor	ized access:	Yes
able with connected:			Yes
eder switches and fuse	es installed and well working:		Yes
emarks on Transforme			

1

7 AR. LI

C. Performance Check of Installation

y filled and water expelled via spillover channel Static head indicated	by pressure gauge in powerh	ouse, Hg = 25.5 m (1 bar = 1 k	alom2 = 40
iow-cond oning	mechanism at intake		
 a. Flow can comp 	etely be blocked if desired a	nd amount of water flowing tow	ional
	oc controlled	(accep	
b. Flow cannot be	stopped and controlled	(not acceptable - non cr	The state of the s
2. Headrace perform	ance:	, , , , , , , , , , , , , , , , , , ,	ideal) H
	or no leakage through head	race (Assortable)	
b. Minor leakage	s but in many parts of the he	race (Acceptable) adrace (Not acceptable- non cr	Х
c. Major leakages	and cracks in the structure		
3. GRP pipe Burial	and in the structure	(Not acceptab	le-critical)
	ons along headrace are burie	al automorphism in the control of th	
b. Any portion not	buried or not covered		
4. Spillway	barred of flot covered	(not acceptable - critical)) П
	W con opfalulus	7.2 339	
b All design flows	w can salely be expelled from	n the spillover channel (accepta	able) X
D. All design flow (can not be expelled safely fro	m spillway channel	
6. Penstock		(not acceptable - critical)	П
	from well 1 1 1		
b. Water leakage from	from penstock joints/welded	section (Accepta	able) X
o. Water leakage in	om penstock joints/welded se	ction (not acceptable - critical)	口
7. Support piers and a			
 a. Metal penstocks 	are adequately supported to	form straight lengths (acceptat	ole) X
b. Feristock line sa	gging	(not acceptable - critical)	
c. Cracks in the stru	cture	(not acceptable - critical)	
. Earth resistance Te	st	(Hot dooptable - Chical)	
a. Neutral earthing	at powerhouse < 1 ohm	3	
b. > 10 ohm	, contract to the	(acceptal	
c. > 50 ohm		(not acceptable - non critic	cal)
Value: 0.48 Ohm	1	(not acceptable - critical)	П
	s for performance check duri	ng static as a list	
	Farmania Contack dul	IIU Static condition	

m gall. LH

C.2 Situation 2 - Dynamic condition

(All valves are slowly opened to maximum open condition so as to operate the set at full flow condition. Forebay should still be filled with water up to the spillover channel crest level. Bring more water if required)

Note dynamic head indicated by the pressure gauge in powerhouse, Hn = 24.5 m Net head Water discharge at tailrace, Q = 1.9 m³/s (approximate measure by means of weir at tailrace)

Give the Value power produced, P: 400 kW Guaranteed power produced:

(Yes)

The following tests are mandatory during commissioning:

No-load test with AVR Excitation test

Loading test (Load acceptance, load rejection, output test, stability of controller/governor)

Efficiency test water to wire using calibrated test and instruments

or moter readings as compared to rea	dings of other measuring device readings	
a.Within 5%		1000
b. More than 5%	(acceptable)	X
2. More than 576	(not acceptable - non critical)	

Any other remaining remarks or observation on dynamic test performed — (Requirements as per the prevailing standards for MHP installation should be met)

# Un	it Starting mode	Yes/No	Remark
ope	nual mode (Each step of the sequence is initiated by an erator up to synchronization stage)	YES	Semi-automatic mode
2 Aut	to mode (Each step of sequence is executed by the system itself to synchronization as long as start command is initiated)	YES	

m

-	MECHAN	ICA	AL SPINN	ING, INI	TIAL SY	NCHRON	IZING &	LOADING	
Sr No	PARAMETE	RS	STAND		/ Idle	w/ Idle	w/ Idle	w/ Idle w	e W/
1.0	Starting Time	1	-	5.8 se	c 118			JO IIII	60 min
2.0	Stopping Time	e	_		sec				
3.0	HWL, M	-						and the same of th	
4.0	TWL, M								
5.0	Net Head		25.7	25.3	25.3	25.3	25.0		
6.0	Intake Gate Opening - %		30	30	30	30	30	30	30
7.0	BFV Opening %	-	0	100	100	100	100	100	
8.0	G.V % openin	g	0	4.5 %	5 %	5 %			100
9.0	Speed of Generator - Ri	PM	0	600	600	600	5 %	5 %	5 %
10.0			0					- 000	600
11.0					-	-			_
11.1	Cusham Oil			99 Bar	95.4	104	97 Ba		103
12	Generator Tem	D.			Bar	Bar	37 Da	r 93 Bar	Bar
12.1	Description	(in	30.1	31.3	31.0	30.3	29.5	29.1	28.5
12.2	Bearing DE (in o	C)	30.7	31.9	32.9	34.0	34.7		
12.3	U Winding (in °C	2)	43.2	45.6	47.1	48.2		35.3	35.6
12.4	V Winding (in °C		47.4	49.8	51.2	52.1	48.8	49.1	49.4
12.5	W Winding (in °C		47.7	49.8	51.1	51.9	52.7 52.6	53.0	53.3
13	Transformer					32.3	32.0	53.1	53.4
13.1	Oil temperatur	re							
13.2	temperature		N/A	N/A	N/A	N/A	N/A	N/A	N/A
14.0	Pressure Kg/cm ²								
14.1	Spiral / Turbin casing	е	()	2.01 Bar	2.01 Bar	2.01 Bar	2.01	2.01	2.01
14.2	Penstock		2.12	2.01 Bar	2.01 Bar	2.01	2.01	2.01	2.01
14.3	Draft tube pressur	e	CONTRACTOR OF THE PARTY OF THE	N/A	N/A	Bar	Bar	Bar	Bar
15.0	Feeder Supply			-7.1	.1//	N/A	N/A	N/A	N/A
15.1	Voltage								
15.2	Current								
16.0	Excitation voltage				40 V	40 V	40 V	40 V	40.1/
16.1	Voltage generator				402.8	403.0	402.4	402.8	40 V 402.8
.6.2	Current field				V	V	V		V
		_			1.5 A	1.5 A	1.5 A	1.5 A	1.5 A

A ST. LH

	MECHANICA	L SPINNING, IN	ITIAL SYNCHRONIZING & LOADING
19.0	Power factor - Cos Ø		ELECTRONIZING & LOADING
20.0	MIV Opening time	36 sec	
21.0	MIV closing time	103 sec	
DATE: 141031 2020 EUCL REPRESENTATIVE			SIGNATURE: Lars Helick NAME: LARS HELVILL DATE: 14/03/2020
LUCL	REPRESENTATI	IVE	CARERA- EDERER & TIGER LIMITED REPRESENTATIVE

Sr.	MECHANI			RATED	AT RATED		LE LOAD		
No		N.S	STAND	SPEED & NO LOAD	SPEED & RATED VOLTAGE	25 %	50 %	75 %	100
1.0	Starting Time			LUAD					
2.0	Stopping Time				440			-	F24
3.0	The second secon	TO			440 sec				531 sec
4.0									
5.0				-		25.4			
6.0	Total - C.					25.1 70	70	100	100
7.0	BFV Opening	- %				100			
8.0	G.V % opening	a					100	100	100
9.0	Speed of Gene					21.8 595	34.5	48.7 602	70
10.0	Load - KW							T TOTAL TOTAL	605
11.0						98	196	294	392
11.1	System Oil Press	ure				94	94	100	95
12	Generator Tem	D.				Bar	Bar	Bar	Bar
12.1	Bearing NDE (in					22.0	-		
12.2	Bearing DE (in o			-		26.9	26.2	25.8	25.7
12.3	U Winding (in °C					36.7	37.3	37.9	38.3
12.4	V Winding (in °C					50.2	52.6	57.3	64.3
12.5	W Winding (in °C					54.0	56.5	61.1	68.4
13	Transformer					54.1	56.5	61.1	68.0
13.1	Oil temperatur					35.2	34.7	34.6	34.3
13.2	Winding temperature							0.110	
14.0	Pressure Kg/cm ²								
14.1	Spiral / Turbing casing (in Bar)	е				2.01	1.97	1.92	1.81
14.2	Penstock (in Ba					2.0	1.98		W-57 FAMILY ATT
14.3	Draft tube pressur	re e					1.50	1.74	1.85
15.0	Feeder Supply								
15.1	Voltage (in kV)					29.9	30.1	30.0	30.4
15.2	Current (in A)								
16.0	Excitation			-		0.21	0.47	0.7	0.9
16.1	Voltage (in V)								
16.2	Current (in A)						40	40 4	40
	(117)					1.8	2.2	2.6	3.2

	MECHAN	NICAL S	PINNING,	INITIAL	SYNCHRON	IZING 8	LOADI	NG		
Sr. PARAMETER				RATED	AT	STABLE LOAD (KW)				
	TERS STAND STILL		SPEED & NO LOAD	SPEED & RATED VOLTAGE	25 %	50 %	75 %	100		
19.0	Power fac Cos Ø	tor –		IOAD		0.95	0.95	0.95	0.95	
20.0	Geerator voltage (in	n V)				401.6	404	496	413	
21.0	Generator current (in					131	270	407	535	
NAME DATE	TURE: ATANYUM: 14/103/20 REPRESENT	CURA			SIGNATUR NAME : L DATE : JU CARERA- LIMITED	EDERE	OAO R&TI	GER		
NAME	TURE : Annick	1NG D 20 ATIVE	461 RE		SIGNATUR NAME : TAP DATE : 149 CARERA-	E: 1./ 103/20 EDEREI	Gopal R& TIC	lgopu, SER	L	

LIMITED REPRESENTATIVE

	LOAD THROW OFF	TEST					
SI No	PARAMETERS	PERCENTAGE OF LOADS					
		25%	6 50%	6 75%	6 100%		
1.0	STARTING TIME	168	178	180	236		
2.0	STOPPING TIME	419	434	441			
3.0	Head Water Level (HWL) in Meters		134	441	452		
4.0	Tail Water Level (TWL) in Meters						
5.0	GROSS HEAD AVAILABLE in meters	25.5	25.5	25.5	25.5		
6.0	Net Head Available in Meters	24.8			25.5		
7.0	% LOAD in KW at the time of load		24.6	24.0	23.2		
8.0	throw off	98	196	294	400		
	SPEED Before lead throw 55						
8.1	Before load throw off RPM	599	599	603	599		
8.2	Max. during throw off RPM	756	916	987	1052		
8.3	% Speed rise	26.2	52.9	63.7	75.6		
8.4	Time taken for speed stabilization	13 sec	21 sec	21 sec			
9.0	PRESSURE						
9.1	Penstock Pressure Before load throw off (in Bar)	2.02	2.01	1.94	1.88		
9.2	Maximum Pr. during throw off (in bar)	2.11	2.11	2.10	2.10		
9.3	% Pressure rise in penstock	4.5	4.5	8.2	11.7		
10.0	GUIDE VANE			-	11.7		
10.1	GV % opening - Before load throw off	22	34.2	48.2	71.7		
10.2	GV closing time during load throw off	3.5	5.3	8 sec			
11.0	BUTTER FLY VALVE (BFV)	sec	sec	0 360	11 sec		
11.1	BFV % opening - Before load throw off	100	100	100	100		
11.2	BFV closing time during load throw off	103	103	103	103		
12.0	Turbine Oil Pumping Unit (OPU)						
12.1	System oil pressure before load throw off	102	101	102.5	101		
12.2	System oil pressure after load throw off	101.3	100	100	98		
13.0	Stator voltage (V)						
13.1	Before load throw off	400	400	400	444		
13.2	Max. during throw off	400	400	409	411		
13.3	% rise in voltage	0	0	409 0	539 31.1		

9 m for CH

	LOAD THRO	W OFF TE	ST					
SI No	PARAMETERS	PARAMETERS		PERCENTAGE OF LOADS				
			25%	50%	75%	100%		
SIGNATURE: ALL J. BOSCO NAME: NTANYUNGURA J. BOSCO DATE: 14/03/2020 EUCL REPRESENTATIVE		SIGNAT NAME : DATE : CARER LIMITE						
SIGNATURE: NAME: Annick DATE: 14103120 EUCL REPRESENT	INGAPOLE ATIVE	SIGNAT NAME : DATE : CARERA LIMITE	URE: 7 1. Now 14/03/20 A- EDEF	da GOR	iggol TIGER	F		

AGATOBWE HYDRO POWER PLANT TEST REPORT OVER ALL CONTENT SHEET

S.NO	DESCRIPTION	SHEETS	
	1. 400 V TNS-S MNS 3.0	DETAILS	
1	GENERATOR PROTECTION RELAY REPORTS	1 of 4	
2	CIRCUIT BREAKER REPORTS		
3	CBCT REPORTS	1 of 3	
	2. 33KV SWITCHGEAR P.	1 of 2	
1	FEEDER PROTECTION RELAY REPORTS	1 of 2	
2	METERING CT REPORTS		
3	METERING VT REPORTS	1 of 2	
	3. GENERATOR	1012	
1	GENERATOR CT REPORTS 1 of		
2	GENERATOR DROOP CT REPORTS 1 of		
3	GENERATOR VT REPORTS	1 of 2	
	4. TRANSFORMER	1012	
1	TRANSFORMER REPORTS	1 of 4	
	5. HT CABLE	1014	
1	HT CABLE REPORTS	1 of 1	
	6. EARTH PIT	1011	
1	EARTH PIT REPORTS	1 of 1	

Agatobwe Hydro Power Plant

TESTING

Panel ref:+01

Test Report For Generator Protection Relay

Date:06/12/2019

FIELD TEST REPORT FOR GENERATOR PROTECTION RELAY

Location

: Power House

Panel Name

: 400V TN-C-S

General inspection

: OK

		Relay Details	
Type/Model No	REG615	Make	ABB
Relay Nominal Current	1.0 A	Relay SI, No	1VYHR91452759
Aux. supply	230V AC	Relay nominal voltage	110V AC

Testing Equipment Details

Equipment Name	Make & Model	Serial Number	
Relay Test kit	OMICRON/CMC 256	GK132P	

1. MEASUREMENTS:

CT RATIO: 750/1A

VT RATIO: 0.400KV/110V

Ref	Injected Current (A)	Applied Voltage(V)	Reading of the Relay (A)	Reading of the Voltage(KV)
Ia	1.0	63.51	751.8	0.399
Ib	1.0	63.51	749.8	0.400
Ic	1.0	63.51	749.9	0.400
In	1.0	-	100.0	-

2. Over Current Protection: (I>)

Set Current: 1.0A

TMS: 0.15

Curve: IDMT - NI

Ref	Injected Current (A)		Operating Time (Sec)	
	X2	X5	X2	X5
R	2.0	5.0	1.511	0.650
Y	2.0	5.0	1.511	0.650
В	2.0	5.0	1.511	0.650
	Calculated Value		1.504	0.642

Tested by	Witnessed by		
M/S VEPL	M/S) Malthe Winje		
Sign: Cuy	Sign		
Name P. Sakthivel	Name: T. Nanda Gopal		
Designation: Sr. Protection Engg	Designation: Resident Engineer		
	Page: 1 of 4		

TESTING

Malthe Winje

Panel ref:+01

Test Report For Generator Protection Relay

Date:06/12/2019

3. Over Current Protection: (I>>)

Set Current: 4.0A

Set Time: 0.02 Sec

Phase	Injected Current (A)	Operating Time (Sec)
R	4.0	0.037
Y	4.0	0.037
В	4.0	0.037

4. Negative Phase Sequence:

Set Current: 0.2A

Set Time: 1.0 Sec

Phase	Injected Current (A)	Operating Time (Sec)
R	0.2L0	1.034
Y	0.2⊾120	1.034
В	0.2L-120	1.034

5. Voltage control with Over Current Protection:

Set Current: 1.0A

Set volt: 0.8*Un

TMS: 0.3

Curve: IDMT - NI

Ref	Applied Voltage	Voltage Injected Current (A)		Operating Time (Sec	
	rippied votage	X2	X5	X2	X5
R	50.8	2.0	5.0	3.004	1.281
Y	50.8	2.0	5.0	3.004	1.281
В	50.8	2.0	5.0	3.004	1.281
	Calculated	Value		3.009	1.284

6. Earth Fault Protection: (10 >)

Set Current: 0.1A

TMS: 0.2

Curve: IDMT - NI

Ref	Injected (Current (A)	Operating	Time (Sec)
	X2	X5	X2	X5
N	0.2	0.5	2.018	0.856
	Calculated Value		2.006	0.856

1 Tested by	Witnessed by
M/S VEPL	M/S Malthe Winje
Sign:	Sign:
Name: P. Sakthivel	Name: T. Nanda Gopal
Designation: Sr. Protection Engg	Designation: Resident Engineer
	Page: 2 of 4

Malthe Winje

Panel ref:+01

Test Report For Generator Protection Relay

TESTING

Date:06/12/2019

7. Earth Fault Protection: (I0 >)

Set Current: 0.5A

Set Time: 0.04 Sec

Phase	Injected Current (A)	Operating Time (Sec
RN	0.5	
		0.061

8. Under Voltage Protection:

Set Voltage: 0.9*Un

Set Time: 0.5 Sec

Phase	Applied Voltage (V)	Operating Time (Sec
R	57.1	1 0 (41)
Y	57.1	0.509
В	57.1	0.309

9. Over Voltage Protection:

Set Voltage: 1.1*Un

Set Time: 2.0 Sec

Phase	Applied Voltage (V)	Operating Time (Sec
R	69.90	
Y	69.90	2.023
В	69.90	2.023

10. Under Frequency Protection:

Set Voltage: 0.98

Set Time: 1.0 Sec

Phase	Applied Voltage (V)	Operating Time (Sec
R	63.51@49HZ	
Y	63.51@49HZ	1.098
В	63.51@49HZ	

Tested by	Witnessed by
M/S VEPL	Al/S Malthe Winje
Sign: Vary	Sign: Sign:
Name: P. Sakthivel	Name: T. Nanda Gopal
Designation: Sr. Protection Engg	Designation: Resident Engineer

Malthe Winje

Panel ref:+01

Test Report For Generator Protection Relay

TESTING

Date:06/12/2019

11. Over Frequency Protection:

Set Voltage: 1.02

Set Time: 1.0 Sec

and the second	500	inic. 1.0 Sec
Phase	Applied Voltage (V)	Operating Time (Sec
R	63.51@51HZ	operating time (Sec.)
Y	63.51@51HZ	1,007
В	63.51@51HZ	1.097

12. Over Excitation Protection:

Set Voltage: 100%

Set Time: 0.5 Sec

500	inic. 0.3 Sec
Applied Voltage (V)	Operating Time (Sec)
70.51@50HZ	operating Time (Sec)
70.51@50HZ	0.510
70.51@50HZ	0.518
	Applied Voltage (V) 70.51@50HZ

13. Under Excitation Protection:

Set Voltage: 100%

Set Time: 0.5 Sec

We say		Set Time: 0.5 Sec	
Phase	Applied Voltage (V)	Injected Current (A)	Operating Time (S.)
R	20.0	2.5∟300	Operating Time (Sec)
Y	20.0	2.5⊾180	0.7
В	20.0	2.5L60	0.762
		2.5100	

14. Reverse Power Protection:

Set Voltage: 0.2

Set Time: 1.0 Sec

		out Time. 1.0 Sec	
Phase	Applied Voltage (V)	Injected Current (A)	Operating Time (Sec)
R	63.51	0.2⊾180	Operating Time (Sec)
Y	63.51	0.2L60	
В	63.51		1.017
	33,31	0.2L300	

15. Remarks:

- 1. Relay Found Healthy.
- 2. Operating LED checked ok.

Tested by	With
Sign: M/S VEPL	Witnessed by M/S/Malthe Winje
Name: P. Sakthivel Designation: Sr. Protection Engg	Sign: Name: T. Nanda Gopal
2 Trocetion Engg	Designation: Resident Engineer
	Pag

PROJECT	AGATOBWE HYDRO POWER PLANT		
LOCATION	POWER HOUSE	EQUIPMENT :-	Circuit Breaker
BOARD NAME	400V TNC-S MNS 3.0 SWDB	PAGE	Page 1 of 3
FEEDER NAME & NO	+01 Generator Breaker	DATE:	08/12/2019

TEST REPORT FOR CIRCUIT BREAKER

1. CIRCUIT BREAKER DETAILS:

	NAME PLATE DETAIL	LS
Make: ABB	Rated volta	nge: 415V
Rated current: 800 A	Frequency	: 50-60Hz
Type: SACEE2.2N		Closing Coil Supply Voltage: 24V DC
Sr. No.: BM11109325	Aux. volts	Opening Coil Supply Voltage : 24V DC
IEC Standard : 60947-2		Motor Supply Voltage : 24V DC

2. INSULATION RESISTANCE TEST:

Applied Voltage	Reference		Measured Value	
		L1	L2	L3
500V	Pole - Earth(Close)	>1GΩ	>1GΩ	>1GΩ
2007	Across Pole(Open)	>1GΩ	>1GΩ	>1GΩ

Applied Voltage	Reference	Measured Value
500 V	L1 to L2	>1GΩ
500 V	L2 to L3	>1GΩ
500 V	L3 to L1	>1GΩ

3. CONTACT RESISTANCE TEST:

Reference	Meas	ured Value in micro ohms	s (μΩ)
	L1	L2	L3
CB Close Condition	37.4	37.6	37.8

Tested by M/S VEPL	Witnessed by M/S Malthe Winje
Sign: July	Sign:
Name: K.Nesamani	Name: T. Nanda Gopal
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer

PROJECT	AGATOBWE HYDRO POWER PLANT		
LOCATION	POWER HOUSE	EQUIPMENT :-	Circuit Breaker
BOARD NAME	400V TNC-S MNS 3.0 SWDB	PAGE	Page 2 of 3
FEEDER NAME & NO	+01 Generator Breaker	DATE:	08/12/2019

4. BREAKER TIMING TEST:

Reference	Meas	ured Value in micro ohms	s (μΩ)
	L1	L2	L3
Closing Time	65.4	65.6	65.7
Tripping Time	44.6	44.8	44.5
C-O	60.9	61.2	61.1

5. Rack In / Rack Out

: OK

6. Spring Charge Mechanism

Electrical Operation

:OK

Mechanical operation

: OK

7. Spring Charge Indication

Electrical

: NA

Mechanical

: OK

8. COIL RESISTANCE TEST:

Reference	Coil Resistance
Tripping Coil	6.43 MΩ
Closing Coil	5.49 ΜΩ

9. TRIPPING & CLOSING OPERATION

Operation	Electrical	Mechanical
Trip	OK	OK
Close	OK	ОК

10. Open / Close Indication

1 - /	
Electrical	: NA
Mechanical	: OK
11. Auxiliary Contacts	: OK
12. Test, Service and Disconnected Operation	: OK
13. Breaker Close - Open Operation Counter	: NA
14. Breaker found healthy	: OK

Tested by M/S VEPL	Witnessed by M/S Malthe Winje
Sign: Jun	Sign:
Name: K.Nesamani	Name: T. Nanda Gopal
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer

PROJECT	AGATOBWE HYDRO POWER PLANT		
LOCATION	POWER HOUSE	EQUIPMENT :-	Circuit Breaker
BOARD NAME	400V TNC-S MNS 3.0 SWDB	PAGE	Page 3 of 3
FEEDER NAME & NO	+01 Generator Breaker	DATE:	08/12/2019

15. TEST INSTRUMENTS USED:

S.No	Description	Make / Model
1 Digital Megger		Kyoritsu / 3125
2 CRM Kit		Scope / CRM 200B
3 3 Pole Timer Kit		Scope / SCOT M3K
4	Digital Multimeter	Fluke / 115

16. REMARKS: CB Found Healthy.

Tested by M/S VEPL	Witnessed by M/S Malthe Winje
Sign:	Sign:
Name: K.Nesamani	Name: T. Nanda Gopal
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer

PROJECT	A CAMPONIA	Malthe Winje	generale du Rwendia	
	AGATOBWE HYDRO POWER PLA	INT		
LOCATION	POWER HOUSE	The state of the s		
BOARD NAME	400V TNC-S MNS 3.0 SWDB	EQUIPMENT :-	Current Transformer	
FEEDER NAME & NO	+01 CBCT	PAGE	Page 1 of 2	
	- OI GDC1	DATE:	07/12/2019	

TEST REPORT FOR CURRENT TRANSFORMER

GENERAL DETAILS

	NAME PLATE DETAILS	
Make: NORATEL	Frequency: 50-60 Hz	
Type REF: LGU430x150	S.NO: 19/1362680	
Ratio: 100/1A	KV: 0.72/3	
VA: 2	Class: 10P10	
Standard: IEC 61869-2	CIGSS, TOF TO	

1. INSULATION RESISTANCE MEASUREMENT:

	Applied Voltage	Reference	Measured Value
1	500 V	Secondary to Earth	rousarea value
		- Larti	>1GΩ

2. SECONDARY WINDING RESISTANCE

ore Reference	Terminal	Moogured Value V of
Core	C1 C2	Measured Value In Ohms (Ω)
3010	S1 - S2	0.6

3. POLARITY TEST

Core Reference Term		rminal	Measured Value
Core	S1 (+VE)	S2 (-VE)	
			OK

4. CURRENT RATIO TEST:

Core Reference	Injected Primary Current (A)	Measured Secondary Current (A
	25	0.249
Core S1 - S2	50	0.501
	75	0.751
	100	0.999

Tested by M/S VEPL	Miltona William
gn: ame: K.Nesamani	Sign:
signation: Sr. Commissioning Engineer	Name: T. Nanda Gopal Designation: Resident Engineer

TESTING

Panel ref:+01

Test Report For Feeder Protection Relay

Date:06/12/2019

FIELD TEST REPORT FOR FEEDER PROTECTION RELAY

Location

: Power House

Panel Name

: HT PANEL

General inspection

: OK

	Relay Details	
REF615	Make	ABB
1.0 A	Relay SI, No	1VHR91453536
230V AC		
	1.0 A	REF615 Make 1.0 A Relay SI, No

Testing Equipment Details

Equipment Name	Make & Model	Contal N
Relay Test kit	O) Honor	Serial Number
rotty rest kit	OMICRON/CMC 256	GK132P

1. MEASUREMENTS:

CT RATIO: 80A

Ref	Injected Current (A)	Applied Voltage(V)	Reading of the Relay (A)	Reading of the Voltage(KV)
Ia	1.0	•/	80.1	· oninge(IXY)
Ib	1.0	-	80.0	-
Ic	1.0	<u> </u>	80.0	-
In	1.0		80.0	•
In	1.0	-	55.5	-

2. Over Current Protection: (I >)

Set Current: 1.2A

TMS: 0.15

Curve: IDMT - NI

Ref	Injected Current (A)		Operating Time (Sec	
	X2	X5	X2	X5
R	2.4	6.0	1.513	0.652
Y	2.4	6.0	1.513	
В	2,4			0.652
		6.0	1.513	0.652
	Calculated Value		1.504	0.642

Tested by	Without
M/S VEPL	Witnessed by
Sign: Why	Sign: Sign:
Name: P. Sakthivel	Name: T. Nanda Gopal
Designation: Sr. Protection Engg	Designation: Resident Engineer

Page: 1 of 2

TESTING

Panel ref:+01

Test Report For Feeder Protection Relay

Date:06/12/2019

3. Over Current Protection: (I>>)

Set Current: 4.0 A

Set Time: 0.04 Sec

Phase	Injected Current (A)	Operating Time (Sec)
R	4.0	0.064
Y	4.0	0.065
В	4.0	
	1.0	0.064

4. Earth Fault Protection: (I0 >)

Set Current: 0.2A

TMS: 0.2

Curve: IDMT - NI

Ref	Injected (Current (A)	Operating Time (Se	
	X2	X5	X2	X5
N	0.2	0.5	2.018	0.858
	Calculated Value		2.006	0.856

5. Earth Fault Protection: (I0 >)

Set Current: 0.5A

Set Time: 0.04 Sec

	561	me. 0.04 Sec
Phase	Injected Current (A)	Operating Time (Sec
RN	0.5	
	0.3	0.067

6. Remarks:

- 1. Relay Found Healthy.
- 2. Operating LED checked ok.

Tested by	Witnessed by
Sign: Name: P. Sakthivel	M/S Malthe Winje Sign: Name: T. Nanda Gopal
Designation: Sr. Protection Engg	Designation: Resident Engineer Page: 2 of 2

PROJECT	AGATOBWE HYDRO POWER PLANT		
LOCATION	POWER HOUSE	EQUIPMENT :-	Current Transformer
BOARD NAME	33KV SWITCHGEAR PANEL	PAGE	Page 1 of 2
FEEDER NAME & NO	METERING CT	DATE:	07/12/2019

TEST REPORT FOR CURRENT TRANSFORMER

GENERAL DETAILS

			NAME P	LATE DETAIL	LS .	
Make : ABB		Frequency: 50Hz				
Type: T	PU 70.53 or n.7	15224		Idyn: 15.8K	TA .	
Icth: 12	A			Ith: 6.3 (1s) KA		
STANDA	ARD : IEC 61869	-2		Mfd.year: 2	019	
	1S1-1S2 :	10/5A		Core-2	2S1-2S2	2:10/5A
Core-1 Metering	5VA		Core-2 Protection		5VA	
	g 0.2SFS10			0.2SFS10		
	ext. 120%	b			ext. 120	1%
S.No:	R Phase: 1VLT	5119006714	Y Phase:	1VLT511900	6715	B Phase: 1VLT5119006716

1. INSULATION RESISTANCE MEASUREMENT:

S.No	Applied	Reference	Measured Value				
Voltage	Voltage	L1	L2	L3			
1	5000 V	Primary to Earth	296 GΩ	254 GΩ	232 GΩ		
2	5000 V	Primary to Secondary-1	312 GΩ	281 GΩ	257 GΩ		
3	5000 V	Primary to Secondary-2	339 GΩ	356 GΩ	302 GΩ		
4	500 V	Secondary-1 to Earth	>1 GΩ	>1 GΩ	>1 GΩ		
5	500 V	Secondary-2 to Earth	>1 GΩ	>1 GΩ	>1 GΩ		
6	500 V	Secondary-1 to Secondary-2	>1 GΩ	>1 GΩ	>1 GΩ		

2. SECONDARY WINDING RESISTANCE:

Core Reference	Terminal	Mea	Measured Value In Ohms (Ω)		
core Reference	1 et minai	L1	L2	L3	
Core 1	1S1 - 1S2	0.3	0.3	0.3	
Core 2	2S1 - 2S2	0.3	0.3	0.3	

Tested by M/S VEPL	Witnessed by M/S Malthe Winje		
Sign: Sign:	Sign:		
Name: K.Nesamani	Name: T. Nanda Gopal		
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer		

PROJECT	AGATOBWE HYDRO POWER PLANT	Water will	
LOCATION	POWER HOUSE		
DO I DO IVI		EQUIPMENT :-	Current Transformer
FEEDER NAME & NO	33KV SWITCHGEAR PANEL	PAGE	Page 2 of 2
A DEDUK HAME & NU	METERING CT	DATE:	07/12/2019

3. POLARITY TEST:

Core	Terr	ninal		Measured Value	
Reference			L1	L2	L3
Core 1	1S1 (+VE)	1S2 (-VE)	ок	ОК	ОК
Core 2	2S1 (+VE)	2S2 (-VE)	ОК	ОК	OK

4. CURRENT RATIO TEST:

Core Reference	Ir	jected Prima Current (A)	ry	Measured	l Secondary C	urrent (A)
	L1	L2	L3	L1	L2	L3
Core 1	5.0	5.0	5.0	2.500	2.501	2.502
1\$1 - 1\$2	10.0	10.0	10.0	5.000	5.000	5.000

Core Reference	Injected Primary ence Current (A)		Injected Primary Current (A)		l Secondary C	urrent (A)
	L1	L2	L3	L1	L2	L3
Core 2	5.0	5.0	5.0	2.501	2.500	2.499
2\$1 - 2\$2	10.0	10.0	10.1	4.999	5.000	4,999

5. INSTRUMENTS USED:

Sl. No	Description	Make / Model
1	Digital Megger	Kyoritsu / 3125
2	Digital Multimeter	Fluke / 115
3	Galvanometer	Titale / 113
4	Variac	Sudharsan
5	Loading Transformer	Sudharsan / SI/STR-10
6	Digital Clamp Meter	Kyoritsu / KEW SNAP 2003A
7	Digital Leakage Tester	Kyoritsu / KEW SNAP 2434

6. REMARKS: CT Found Healthy.

Tested by M/S VEPL	Witnessed by M/S Malthe Winje
Sign:	Sign:
Name: K.Nesamani	Name: T. Nanda Gopal
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer

PROJECT	AGATOBWE HYDRO POWER PLANT		
LOCATION	POWER HOUSE	EQUIPMENT :-	Voltage Transformer
BOARD NAME	33KV SWITCHGEAR PANEL	PAGE	Page 1 of 2
FEEDER NAME & NO	METERING VT	DATE:	06/12/2019

TEST REPORT FOR VOLTAGE TRANSFORMER

GENERAL DETAILS

			DETAILS				
MAKE: ABB		Standa	Standard : IEC : 61869-3				
Type: TJC 7.1 or n.715224		Freq: 5	Freq: 50Hz				
	R Phase: 1VLT5219001050		33000/√3//110/√3/110/3V				
S.No:	Y Phase: 1VLT5219001051	Ratio	a-n: 33000/√3//110/√3V	Cl: 0.2	5 VA	1.9xUn/8h	
	B Phase: 1VLT5219001052		da-dn: 33000/√3//110/3V	Cl: 3P	30VA	1.9xUn/8h	
Mfg: 2019		36/70/	/170KV	600	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		

1. INSULATION RESISTANCE MEASUREMENT:

Core	Applied Voltage	Measured Value			
		L1	L2	L3	
Primary - Earth	5000V	289 GΩ	267 GΩ	367 GΩ	
Primary - Secondary Core 1	5000V	356 GΩ	253 GΩ	381 GΩ	
Primary - Secondary Core 2	5000V	302 GΩ	398 GΩ	290 GΩ	
Secondary Core 1 - Earth	500 V	>1 GΩ	>1 GΩ	>1 GΩ	
Secondary Core 2 - Earth	500 V	>1 GΩ	>1 GΩ	>1 GΩ	
Sec.Core 1 - Sec.Core 2	500 V	>1 GΩ	>1 GΩ	>1 GΩ	

2. SECONDARY WINDING RESISTANCE:

Core	Terminal	Me	asured Value in Ohms (Ω)	
		L1	L2	L3
CORE 1	a-n	0.4	0.4	0.4
CORE 2	da-dn		0.8	

Tested by M/S VEPL	Witnessed by M/S Malthe Winje
Sign: July	Sign:
Name: K.Nesamani	Name: T. Nanda Gopa
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer

PROJECT	AGATOBWE HYDRO POWER PLANT	,	
LOCATION	POWER HOUSE	EQUIPMENT :-	Voltage Transfermen
	33KV SWITCHGEAR PANEL	PAGE	Voltage Transformer
FEEDER NAME & NO	METERING VT	DATE:	Page 2 of 2
		DAIL.	06/12/2019

3. POLARITY TEST

Core	Bety	ween	Measured Value		
			L1	L2	L3
CORE 1	a (+VE)	n (-VE)	ОК	ОК	ОК
CORE 2	da (+VE)	dn (-VE)	ОК	OK	OK

4. VOLTAGE RATIO TEST

Applied Voltage at Primary		Measu	red Voltage at Sec	ondary	
L1	L2	L3	L1	L2	L3
1002	1001	1008	3.421	3.414	3.434
2007	2003	2007	6.790	6.750	6.740
3003	3005	3004	10.09	10.00	10.01

Applied Voltage at Primary		Measured Vo	ltage at Secondary
Reference	Measured Value	Core-2	Measured value
L1-L2	400.2	400.2 400.0 da-dn 400.8	0
L2-L3	400.0		
L3-L1	400.8		

5. INSTRUMENTS USED:

Description	Make / Model	
Digital Megger	Kyoritsu / 3125	
Digital Multimeter	Fluke / 115	
Variac	Sudharsan	
Step Up Transformer	Sudharsan / 91/HV-5/2	
Galvanometer		
	Digital Megger Digital Multimeter Variac Step Up Transformer	

6. REMARKS: VT Found Healthy.

Tested by M/S VEPL	Witnessed by M/S Malthe Winje
Sign: Juny	Sign:
Name: K.Nesamani	Name: T. Nanda Gopal
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer

PROJECT	AGATOBWE HYDRO POWER PLANT		
TOOLIMITATE	POWER HOUSE	FOHIDMENT.	
BOARD NAME	400V TNC-S MNS 3.0 SWDB	EQUIPMENT :-	Current Transformer
FEEDER NAME & NO		PAGE	Page 2 of 2
	. OI CDCI	DATE:	07/12/2019

5. INSTRUMENTS USED:

Sl. No	Description	Make / Model
1	Digital Megger	Kyoritsu / 3125
2	Digital Multimeter	Fluke / 115
3	Galvanometer	
4	Variac	Sudharsan
5	Loading Transformer	Sudharsan / SI/STR-10
6	Digital Clamp Meter	Kyoritsu / KEW SNAP 2003A
7	Digital Leakage Tester	Kyoritsu / KEW SNAP 2434

6. REMARKS: CT Found Healthy.

Tested by M/S VEPL	Witnessed by M/S Malthe Winje
Sign: Aug	Sign:
Name: K.Nesamani	Name: T. Nanda Gopal
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer

PROJECT	AGATOBWE HYDRO POWER PLANT		
LOCATION	POWER HOUSE	EQUIPMENT :-	Voltage Transformer
BOARD NAME	GENERATOR	PAGE	Page 1 of 2
FEEDER NAME & NO	Generator VT	DATE:	06/12/2019

TEST REPORT FOR VOLTAGE TRANSFORMER

GENERAL DETAILS

		DETAILS	
MAKE	: RS ISOLSEC	Standard : IEC : 61869-3	
Type:	TP126-1	Freq: 50/60)Hz
	R Phase: 18/380386/2	Ratio	400/√3//110/√3
S.No:	Y Phase: 18/380386/3	Burden	10
	B Phase: 18/380386/1	Class	0.2
Ins. Cl	: E	0.72/3KV	-

1. INSULATION RESISTANCE MEASUREMENT:

Core	Applied Voltage	Measured Value		
	Applied voltage	L1	L2	L3
Primary – Earth	500V	>1 GΩ	>1 GΩ	>1 GΩ
Primary - Secondary	500V	>1 GΩ	>1 GΩ	>1 GΩ
Secondary - Earth	500 V	241 ΜΩ	326 MΩ	298 ΜΩ

2. SECONDARY WINDING RESISTANCE:

Core	Terminal	Me	asured Value in Ohms	$G(\Omega)$
	Terminat	L1	L2	L3
CORE	a-n	0.5	0.5	0.5

3. POLARITY TEST:

Core	Rety	Between		Measured Value	×221.0
	200		L1	L2	L3
CORE	a (+VE)	n (-VE)	ОК	ОК	ОК

Tested by M/S VEPL	Witnessed by M/S Malthe Winje
Sign:	Sign:
Name: K.Nesamani	Name: T. Nanda Gopal
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer

PROJECT	AGATOBWE HYDRO POWER PLANT				
LOCATION	POWER HOUSE	EQUIPMENT :-	Voltage Transformer		
BOARD NAME	GENERATOR	PAGE	Page 2 of 2		
FEEDER NAME & NO	Generator VT	DATE:	06/12/2019		

4. VOLTAGE RATIO TEST:

Applied Vol	tage at Primary	Measured Value at Secondary		
Reference	Measured Value	Core-1	Measured value	
L1-L2	400.1	1a – 1b	110.1	
L2-L3	400.1	1b - 1c	110.1	
L3-L1	401.4	1c – 1a	110.4	

5. INSTRUMENTS USED:

Sl. No	Description	Make / Model	
1.	Digital Megger	Kyoritsu / 3125	
2.	Digital Multimeter	Fluke / 115	
3.	Variac	Sudharsan	
4.	Step Up Transformer	Sudharsan / 91/HV-5/2	
5.	Galvanometer		

6. REMARKS: VT Found Healthy.

Tested by M/S VEPL	Witnessed by M/S Malthe Winje
Sign: Cury	Sign:
Name: K.Nesamani	Name: T. Nanda Gopal
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer

PROJECT	AGATOBWE HYDRO POWER PLANT	BWE HYDRO POWER PLANT			
LOCATION	OUTDOOR POWER HOUSE	EQUIPMENT :-	Transformer		
BOARD NAME	TRANSFORMER	PAGE	Page 1 of 4		
FEEDER NAME & NO	TRANSFORMER	DATE:	07/12/2019		

TEST REPORT FOR TRANSFORMER

GENERAL DETAILS

			DE			
Make: ABB	3			Year of manuf.: 04.2019		
Maker's Serial	No. : 11 TRO	.0043262		Type: TSPH-19009		
Frequency: 50	Hz			No of phases: 3		
Operating Altit	ude (m) : 20	000		Cooling Type:	ONAN	
	1	28500		Vector Group	: Dyn11	
	2	29250		INS. Level	HV (KV)	170/70
Voltage (V)	3	30000	400		LV (KV)	-/3
	4	30750		Temp. Rise O/	W (K): 60/65	
	5	31500		Impedance Volt. (%): 4.57		
Rated Current	(A)	12.12	909.33	Filling & Sealing Temperature (°C): 25		C): 25
Active Part (Kg):991			Insulating Oil :	NYNAS N. LYRAN	
Oil Weight (Kg) : 462				Year of Manuf	: 04.2019	
Total Weight (F	(g): 1964			Specification:	IEC 60076	

1. INSULATION RESISTANCE MEASUREMENT:

Core	Applied Voltage	Measured Value		
	Applied voltage	1 minute	10 minute	PI Value
HV - Earth	5000V	34.6 GΩ	126.1 GΩ	3.644
LV - Earth	500V	>1 GΩ	>1 GΩ	
HV – LV	5000V	42.9 GΩ	139.9 GΩ	3.261

Tested by M/S VEPL	Witnessed by M/S Malthe Winje		
Sign: July	Sign:		
Name: K.Nesamani	Name: T. Nanda Gopal		
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer		

PROJECT	AGATOBWE HYDRO POWER PLANT		
LOCATION	OUTDOOR POWER HOUSE	EQUIPMENT :-	Transformer
BOARD NAME	TRANSFORMER	PAGE	Page 2 of 4
FEEDER NAME & NO	TRANSFORMER	DATE:	07/12/2019

2. MAGNETIC BALANCE TEST:

Тар		Applied Voltage at Primary			Measured voltage at Primary			Measur	ed volta	ge at se	condary	7
Reference	IU-IV	IV-IW	1W-IU	IU-IV	IV-IW	1W-IU	2u-2v	2v-2w	2w-2u	2u-2n	2v-2n	2w-2n
	401.3				314.2	86.8	6.035	2.292	3.788	3.258	2.528	0.716
1		400.0		228.2		170.9	5.045	4.686	0.371	1.809	3.248	1.435
			401.9	56.09	345.2		2.806	6.268	3.525	0.432	2.789	3.262
	401.1				316.5	84.4	5.715	2.120	3.612	3.093	2.398	0.666
3		400.2		227.9		172.1	4.733	4.469	0.297	1.660	3.074	1.406
			402.0	57.68	343.4		2.674	5.949	3.345	0.395	2.668	3.097
	401.1				312.8	88.1	5.457	2.109	3.417	2.933	2.229	0.690
5		400.3		212.8		187.2	4.604	4.209	0.398	1.662	2.931	1.282
			402.2	59.3	343.5		2.613	5.733	3.145	0.366	2.598	2.942

3. MAGNETHING CURRENT TEST:

Тар	Appli	ed Voltage at Pi	rimary	Measure C	urrent in Secor	idary (mA)
Reference	IU-IV	IV-IW	1W-IU	1U	1V	1W
1	401.2	400.3	402.0	0.7	0.4	0.6
3	400.7	400.6	402.6	0.6	0.3	0.5
5	401.2	400.4	402.0	0.6	0.3	0.5

Tested by M/S VEPL	Witnessed by M/S Malthe Winje
Sign: July	Sign:
Name: K.Nesamani	Name: T. Nanda Gopal
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer

PROJECT	AGATOBWE HYDRO POWER PLANT		
LOCATION	OUTDOOR POWER HOUSE	EQUIPMENT :-	Transformer
BOARD NAME	TRANSFORMER	PAGE	Page 3 of 4
FEEDER NAME & NO	TRANSFORMER	DATE:	07/12/2019

4. VOLTAGE RATIO TEST:

Тар	Applied Voltage at Primary			Measure Voltage at Secondary					
Reference	IU-IV	IV-IW	1W-IU	2u-2v	2v-2w	2w-2u	2u-2n	2v-2n	2w-2n
1	401.0	400.2	402.1	5.619	5.629	5.643	3.251	3.241	3.256
2	401.3	400.3	402.0	5.474	5.487	5.499	3.166	3.160	3.174
3	401.1	400.4	402.5	5.338	5.360	5.355	3.083	3.084	3.097
4	401.3	400.2	402.1	5.207	5.216	5.230	3.012	3.009	3.018
5	401.1	400.2	401.9	5.085	5.097	5.105	2.940	2.936	2.947

5. WINDING RESISTANCE TEST:

Tap Reference	Measured Value at Primary in Ohms (Ω)					
rap kererence	IU-IV	IV-IW	1W-IU			
1	14.871	14.869	14.866			
2	15.319	15.307	15.308			
3	15.758	15.743	15.744			
4	16.196	16.176	16.180			
5	16.612	16.607	16.608			

Measured Value a	t Secondary in mΩ
2u - 2v	1.659
2v – 2w	1.669
2w – 2u	1.667
2u – 2n	0.894
2v - 2n	0.897
2w – 2n	0.903

Tested by M/S VEPL	Witnessed by M/S Malthe Winje		
Sign: \tag{w}	Sign:		
Name: K.Nesamani	Name: T. Nanda Gopal		
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer		

PROJECT	AGATOBWE HYDRO POWER PLANT		
LOCATION	OUTDOOR POWER HOUSE	EQUIPMENT :-	Transformer
BOARD NAME	TRANSFORMER	PAGE	Page 4 of 4
FEEDER NAME & NO	TRANSFORMER	DATE:	07/12/2019

6. VECTOR GROUP TEST:

Conditions	Measured Value	Result
1U1V = 1U2n + 1V2n	401.1 = 3.069 + 398.2	ОК
1V2w = 1V2v	396.6 = 396.5	OK
1W2w < 1W2v	397.4 < 402.1	OK

7. INSTRUMENTS USED:

Sl. No	Description	Make / Model
1.	Digital Megger	Kyoritsu / 3125
2.	Digital Multimeter	Fluke / 115
3.	Transformer Winding Resistance Kit	Scope / TRM 104
4.	Digital Leakage Tester	Kyoritsu / KEW SNAP 2434

8. REMARKS: Transformer Found Healthy.

Tested by M/S VEPL	Witnessed by M/S Malthe Winje
Sign: Sign:	Sign:
Name: K.Nesamani	Name: T. Nanda Gopal
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer

PROJECT	AGATOBWE HYDRO POWER PLANT		THE RESERVE OF THE PERSON OF T
LOCATION	POWER HOUSE	EQUIPMENT :-	HT Cable
BOARD NAME	33KV SWITCHGEAR PANEL	PAGE	Page 1 of 1
FEEDER NAME & NO	Incomer A01 and Outgoing A03	DATE:	10/12/2019

TEST REPORT FOR HT CABLE

1. INSULATION RESISTANCE MEASUREMENT:

INCOMER A01

Reference	Applied Voltage	Measured Value		
		L1	L2	L3
Primary – Earth	5000V	12.5 GΩ	13.8 GΩ	12.9 GΩ

OUTGOING A03

Reference	Applied Voltage	Measured Value		
	rippinea voitage	L1	L2	L3
Primary – Earth	5000V	15.6 GΩ	14.9 GΩ	16.8 GΩ

2. INSTRUMENTS USED:

Sl. No	Description Make / Model	
1.	Digital Megger	Kyoritsu / 3125

3. REMARKS: Cable Found Healthy.

Tested by M/S VEPL	Witnessed by M/S Malthe Winje
Sign:	Sign:
Name: K.Nesamani	Name: T. Nanda Gopal
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer

		Wittitle Willy	
PROJECT	AGATOBWE HYDRO POWER PLANT		
I ROJECT	POWER HOUSE	EQUIPMENT :-	EARTH PIT
LOCATION		PAGE	Page 1 of 1
BOARD NAME	EARTH PIT RESISTANCE	TO THE PARTY OF TH	10/12/2019
FEEDER NAME & NO	POWER HOUSE EARTH PIT	DATE:	10,12,201

TEST REPORT FOR EARTH PIT

1. EARTH PIT RESISTANCE:

Reference	Measured Value in ohms (Ω)
Reference	
Power House Earth Pit	0.4

2. INSTRUMENTS USED:

	Description	Make / Model
I. No	Description	
1	Earth Megger	CIE / DET-2000

3. REMARKS: Earth Pit Value found ok.

Tested by M/S VEPL	Witnessed by M/S Malthe Winje
Sign: Sign:	Sign:
lame: K.Nesamani	Name: T. Nanda Gopal
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer

PROJECT	AGATOBWE HYDRO POWER PLANT		
LOCATION	POWER HOUSE	EQUIPMENT :-	Current Transformer
BOARD NAME	GENERATOR	PAGE	Page 1 of 2
FEEDER NAME & NO	Generator CT	DATE:	06/12/2019

TEST REPORT FOR CURRENT TRANSFORMER

GENERAL DETAILS

			NAME P	LATE DETAILS	
Make : Elek	Tronik			Frequency: 50-60Hz	
Type :				Mfd.year: 2019	
STANDARD	: IEC 61869-2			Ref. LS: 0004003195	51
Core-1 Metering	1S1-1S2 : 75	0/1A	10VA	A	5P10
S.No:	R Phase: PT-	03366-26	Y Pha	ase: PT-03366-25	B Phase: PT-03366-24

1. INSULATION RESISTANCE MEASUREMENT:

S.No	Applied	Reference		Measured Valu	e
3.140	Voltage	Reference	L1	L2	L3
1	500 V	Primary to Earth	>1GΩ	>1GΩ	>1GΩ
2	500 V	Primary to Secondary	>1GΩ	>1GΩ	>1GΩ
3	500 V	Secondary to Earth	>1GΩ	>1GΩ	>1GΩ

2. SECONDARY WINDING RESISTANCE

Core Reference	Terminal	Mea	asured Value In Ohm	s (Ω)
core Reference	Terminal	L1	L2	L3
Core	1S1 - 1S2	0.2	0.2	0.2

3. POLARITY TEST

Core	Torn	ninal		Measured Value	
Reference	Term	IIIIai	L1	L2	L3
Core	1S1 (+VE)	1S2 (-VE)	OK	OK	OK

Tested by M/S VEPL	Witnessed by MyS Malthe Winje		
Sign: July	Sign:		
Name: K.Nesamani	Name: T. Nanda Gopal		
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer		

PROJECT	AGATOBWE HYDRO POWER PLA	ANT	
I ROJECT	POWER HOUSE	EQUIPMENT :-	Current Transformer
LOCATION		PAGE	Page 2 of 2
BOARD NAME	GENERATOR		06/12/2019
FEEDER NAME & NO	Generator CT	DATE:	00/12/2013

4. CURRENT RATIO TEST:

	In	jected Primai Current (A)	ГУ	Measured	Secondary Cu	ırrent (A)
Core Reference	L1	L2	L3	L1	L2	L3
Core 1S1 - 1S2	75.6	75.2	75.9	0.99	0.98	0.99
	186.9	186.3	186.5	0.248	0.247	0.246
	351.2	350.9	350.6	0.497	0.496	0.497

5. INSTRUMENTS USED:

Sl. No	Description	Make / Model
1	Digital Megger	Kyoritsu / 3125
2	Digital Multimeter	Fluke / 115
3	Galvanometer	
4	Variac	Sudharsan
5	Loading Transformer	Sudharsan / SI/STR-10
6	Digital Clamp Meter	Kyoritsu / KEW SNAP 2003A
7	Digital Leakage Tester	Kyoritsu / KEW SNAP 2434

6. REMARKS: CT Found Healthy.

↑ Tested by M/S VEPL	Witnessed by MyS Malthe Winje
ign: \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Sign:
me: K.Nesamani	Name: T. Nanda Gopal
esignation: Sr. Commissioning Engineer	Designation: Resident Engineer

PROJECT	AGATOBWE HYDRO POWER PLAN	Т	
LOCATION	POWER HOUSE	EQUIPMENT :-	Current Transformer
BOARD NAME	GENERATOR	PAGE	Page 1 of 2
FEEDER NAME & NO	Generator Droop CT	DATE:	07/12/2019

TEST REPORT FOR CURRENT TRANSFORMER

GENERAL DETAILS

	NAME PLATE DETAILS	
Make : RS ISOLSEC	Frequency: 50-60 Hz	
Type REF: TA301	S.NO: 19/380489/1	
Ratio: 750/5A	Ins. Cl: E	
VA: 10	Class: 0.5	
Standard: IEC 61869-2		

1. INSULATION RESISTANCE MEASUREMENT:

Applied Reference		Measured Value L2	
500 V	Secondary to Earth	>1GΩ	

2. SECONDARY WINDING RESISTANCE

Core Reference	Terminal	Measured Value In Ohms (Ω) L2
Core	S1 - S2	0.3

3. POLARITY TEST

Core Reference	Terminal		Measured Value L2
	S1 (+VE)	S2 (-VE)	ок

4. CURRENT RATIO TEST:

Core Reference	Injected Primary Current (A)	Measured Secondary Current (A) L2
	75.6	0.498
Core S1 – S2	186.8	1.247
	352.3	2.498

Tested by M/S VEPL	Witnessed by M/S Malthe Winje
Sign: \tag{ws}	Sign:
ame: K.Nesamani	Name: T. Nanda Gopal
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer

PROJECT	AGATOBWE HYDRO POWER PLANT		
TROJECT	POWER HOUSE	EQUIPMENT :-	Current Transformer
Hodriton		PAGE	Page 2 of 2
BOARD NAME	GENERATOR		07/12/2019
FEEDER NAME & NO	Generator Droop CT	DATE:	07/12/2017

5. INSTRUMENTS USED:

Sl. No	Description	Make / Model
1	Digital Megger	Kyoritsu / 3125
2	Digital Multimeter	Fluke / 115
3	Galvanometer	
4	Variac	Sudharsan
5	Loading Transformer	Sudharsan / SI/STR-10
6	Digital Clamp Meter	Kyoritsu / KEW SNAP 2003A
7	Digital Leakage Tester	Kyoritsu / KEW SNAP 2434

6. REMARKS: CT Found Healthy.

Tested by M/S VEPL	Witnessed by M/S Malthe Winje
Sign: \tag{w}	Sign:
Name: K.Nesamani	Name: T. Nanda Gopal
Designation: Sr. Commissioning Engineer	Designation: Resident Engineer